cgal/Algebraic_foundations/doc_tex/Algebraic_foundations_ref/mod.tex

29 lines
901 B
TeX

\begin{ccRefFunction}{mod}
\ccDefinition
The function \ccRefName\ computes the remainder of division with remainder.
In case the argument types \ccc{NT1} and \ccc{NT2} differ,
the \ccc{result_type} is determined via \ccc{Coercion_traits}.\\
Thus, the \ccc{result_type} is well defined if \ccc{NT1} and \ccc{NT2}
are a model of \ccc{ExplicitInteroperable}. \\
The actual \ccRefName\ is performed with the semantic of that type.
The function is guaranteed to be well defined in case \ccc{result_type}
is a model of the \ccc{EuclideanRing} concept.
\ccInclude{CGAL/number_utils.h}
\ccFunction{ template< class NT1, class NT2>
result_type
mod(const NT1& x, const NT2& y);}{}
\ccSeeAlso
\ccRefConceptPage{EuclideanRing}\\
\ccRefConceptPage{AlgebraicStructureTraits::DivMod}\\
\ccRefIdfierPage{CGAL::div_mod}\\
\ccRefIdfierPage{CGAL::div}\\
\end{ccRefFunction}