mirror of https://github.com/CGAL/cgal
52 lines
2.2 KiB
TeX
52 lines
2.2 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous}
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableFunctor} interprets a \ccc{PolynomialTraits_d::Polynomial_d}
|
|
as a homogeneous polynomial with respect to one variable, an provides respective evaluation.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableFunctor}
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient second_argument_type;}{}\ccGlue
|
|
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient third_argument_type;}{}\ccGlue
|
|
\ccTypedef{typedef int fourth_argument_type;}{}\ccGlue
|
|
\ccTypedef{typedef int fifth_argument_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(first_argument_type p,
|
|
second_argument_type u,
|
|
third_argument_type v));}
|
|
{ return $p(u,v)$, with respect to the outermost variable. \\
|
|
The homogeneous degree is considered as equal to the degree of $p$. }
|
|
\ccMethod{result_type operator()(first_argument_type p,
|
|
second_argument_type u,
|
|
third_argument_type v,
|
|
fourth_argument_type h));}
|
|
{ return $p(u,v)$, with respect to the outermost variable. \\
|
|
The homogeneous degree is $h$.
|
|
\ccPrecond: $h \geq degree(p)$ }
|
|
|
|
\ccMethod{result_type operator()(first_argument_type p,
|
|
second_argument_type u,
|
|
third_argument_type v,
|
|
fourth_argument_type h,
|
|
fifth_argument_type i));}
|
|
{ return $p(u,v)$, with respect to the variable $x_i$. \\
|
|
The homogeneous degree is $h$.
|
|
\ccPrecond $h \geq degree_i(p)$
|
|
\ccPrecond $0 < i \leq d$}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
|
|
\end{ccRefConcept}
|