cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate...

52 lines
2.2 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous}
\ccDefinition
This \ccc{AdaptableFunctor} interprets a \ccc{PolynomialTraits_d::Polynomial_d}
as a homogeneous polynomial with respect to one variable, an provides respective evaluation.
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient second_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Innermost_coefficient third_argument_type;}{}\ccGlue
\ccTypedef{typedef int fourth_argument_type;}{}\ccGlue
\ccTypedef{typedef int fifth_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type p,
second_argument_type u,
third_argument_type v));}
{ return $p(u,v)$, with respect to the outermost variable. \\
The homogeneous degree is considered as equal to the degree of $p$. }
\ccMethod{result_type operator()(first_argument_type p,
second_argument_type u,
third_argument_type v,
fourth_argument_type h));}
{ return $p(u,v)$, with respect to the outermost variable. \\
The homogeneous degree is $h$.
\ccPrecond: $h \geq degree(p)$ }
\ccMethod{result_type operator()(first_argument_type p,
second_argument_type u,
third_argument_type v,
fourth_argument_type h,
fifth_argument_type i));}
{ return $p(u,v)$, with respect to the variable $x_i$. \\
The homogeneous degree is $h$.
\ccPrecond $h \geq degree_i(p)$
\ccPrecond $0 < i \leq d$}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}