mirror of https://github.com/CGAL/cgal
155 lines
6.1 KiB
C++
155 lines
6.1 KiB
C++
// Copyright (c) 2017, 2024 GeometryFactory (France)
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org).
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
|
|
//
|
|
// Author(s) : Simon Giraudot, Jane Tournois
|
|
|
|
#ifndef CGAL_POISSON_SURFACE_RECONSTRUCTION_H
|
|
#define CGAL_POISSON_SURFACE_RECONSTRUCTION_H
|
|
|
|
#include <CGAL/license/Poisson_surface_reconstruction_3.h>
|
|
|
|
#include <CGAL/Mesh_triangulation_3.h>
|
|
#include <CGAL/Mesh_complex_3_in_triangulation_3.h>
|
|
#include <CGAL/Mesh_criteria_3.h>
|
|
#include <CGAL/Poisson_mesh_domain_3.h>
|
|
#include <CGAL/make_mesh_3.h>
|
|
#include <CGAL/facets_in_complex_3_to_triangle_mesh.h>
|
|
#include <CGAL/Poisson_reconstruction_function.h>
|
|
#include <CGAL/property_map.h>
|
|
|
|
namespace CGAL {
|
|
|
|
|
|
/*!
|
|
\ingroup PkgPoissonSurfaceReconstruction3Ref
|
|
|
|
Performs surface reconstruction as follows:
|
|
|
|
- compute the Poisson implicit function, through a conjugate
|
|
gradient solver, represented as a piecewise linear function
|
|
stored on a 3D Delaunay mesh generated via Delaunay refinement
|
|
- meshes the function with a user-defined precision using another
|
|
round of Delaunay refinement: it contours the isosurface
|
|
corresponding to the isovalue of the median of the function
|
|
values at the input points
|
|
- outputs the result in a polygon mesh
|
|
|
|
This function relies mainly on the size parameter `spacing`. A
|
|
reasonable solution is to use the average spacing of the input
|
|
point set (using `compute_average_spacing()` for example). Smaller
|
|
values increase the precision of the output mesh at the cost of
|
|
higher computation time.
|
|
|
|
Parameters `sm_angle`, `sm_radius` and `sm_distance` work
|
|
similarly to the parameters of `SurfaceMeshFacetsCriteria_3`. The
|
|
latest two are defined with respect to `spacing`.
|
|
|
|
\tparam PointInputIterator is a model of `InputIterator`.
|
|
|
|
\tparam PointMap is a model of `ReadablePropertyMap` with value
|
|
type `Point_3<Kernel>`.
|
|
|
|
\tparam NormalMap is a model of `ReadablePropertyMap` with value
|
|
type `Vector_3<Kernel>`.
|
|
|
|
\tparam PolygonMesh a model of `MutableFaceGraph` with an internal
|
|
point property map.
|
|
|
|
\tparam Tag is a tag whose type affects the behavior of the
|
|
meshing algorithm (see `make_surface_mesh()`).
|
|
|
|
\param begin iterator on the first point of the sequence.
|
|
\param end past the end iterator of the point sequence.
|
|
\param point_map property map: value_type of `InputIterator` -> Point_3.
|
|
\param normal_map property map: value_type of `InputIterator` -> Vector_3.
|
|
\param output_mesh where the reconstruction is stored.
|
|
\param spacing size parameter.
|
|
\param sm_angle bound for the minimum facet angle in degrees.
|
|
\param sm_radius bound for the radius of the surface Delaunay balls (relatively to the `average_spacing`).
|
|
\param sm_distance bound for the center-center distances (relatively to the `average_spacing`).
|
|
\param tag surface mesher tag.
|
|
\return `true` if reconstruction succeeded, `false` otherwise.
|
|
*/
|
|
template <typename PointInputIterator,
|
|
typename PointMap,
|
|
typename NormalMap,
|
|
typename PolygonMesh,
|
|
typename Tag = CGAL::Manifold_with_boundary_tag>
|
|
bool
|
|
poisson_surface_reconstruction_delaunay (PointInputIterator begin,
|
|
PointInputIterator end,
|
|
PointMap point_map,
|
|
NormalMap normal_map,
|
|
PolygonMesh& output_mesh,
|
|
double spacing,
|
|
double sm_angle = 20.0,
|
|
double sm_radius = 30.0,
|
|
double sm_distance = 0.375,
|
|
Tag tag = Tag())
|
|
{
|
|
typedef typename boost::property_traits<PointMap>::value_type Point;
|
|
typedef typename Kernel_traits<Point>::Kernel Kernel;
|
|
typedef typename Kernel::Sphere_3 Sphere;
|
|
typedef typename Kernel::FT FT;
|
|
|
|
typedef CGAL::Poisson_reconstruction_function<Kernel> Poisson_reconstruction_function;
|
|
typedef CGAL::Poisson_mesh_domain_3<Kernel> Mesh_domain;
|
|
typedef typename CGAL::Mesh_triangulation_3<Mesh_domain, CGAL::Default, Sequential_tag>::type Tr;
|
|
typedef CGAL::Mesh_complex_3_in_triangulation_3<Tr> C3t3;
|
|
typedef CGAL::Mesh_criteria_3<Tr> Mesh_criteria;
|
|
|
|
Poisson_reconstruction_function function(begin, end, point_map, normal_map);
|
|
if ( ! function.compute_implicit_function() )
|
|
return false;
|
|
|
|
Point inner_point = function.get_inner_point();
|
|
Sphere bsphere = function.bounding_sphere();
|
|
FT radius = CGAL::approximate_sqrt(bsphere.squared_radius());
|
|
|
|
FT sm_sphere_radius = 5.0 * radius;
|
|
FT sm_dichotomy_error = sm_distance * spacing / 1000.0;
|
|
|
|
Mesh_domain domain = Mesh_domain::create_Poisson_mesh_domain(function, Sphere(inner_point, sm_sphere_radius),
|
|
CGAL::parameters::relative_error_bound(sm_dichotomy_error / sm_sphere_radius));
|
|
|
|
Mesh_criteria criteria(CGAL::parameters::facet_angle = sm_angle,
|
|
CGAL::parameters::facet_size = sm_radius*spacing,
|
|
CGAL::parameters::facet_distance = sm_distance*spacing);
|
|
|
|
|
|
auto turn_tag_into_mesh_3_manifold_option = [](Tag) {
|
|
if constexpr (std::is_same_v<Tag, CGAL::Manifold_with_boundary_tag>)
|
|
return CGAL::parameters::manifold_with_boundary();
|
|
else if constexpr (std::is_same_v<Tag, CGAL::Manifold_tag>)
|
|
return CGAL::parameters::manifold();
|
|
else
|
|
return CGAL::parameters::non_manifold();
|
|
};
|
|
|
|
C3t3 c3t3 = CGAL::make_mesh_3<C3t3>(domain, criteria,
|
|
turn_tag_into_mesh_3_manifold_option(tag)
|
|
.surface_only()
|
|
.manifold_with_boundary());
|
|
|
|
const auto& tr = c3t3.triangulation();
|
|
|
|
if(tr.number_of_vertices() == 0)
|
|
return false;
|
|
|
|
CGAL::facets_in_complex_3_to_triangle_mesh(c3t3, output_mesh);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
#endif // CGAL_POISSON_SURFACE_RECONSTRUCTION_H
|