cgal/Packages/cgal_window/include/CGAL/LEDA/basic.h

87 lines
2.2 KiB
C++

// ======================================================================
//
// Copyright (c) 1999 The CGAL Consortium
//
// This software and related documentation is part of an INTERNAL release
// of the Computational Geometry Algorithms Library (CGAL). It is not
// intended for general use.
//
// ----------------------------------------------------------------------
//
// release : $CGAL_Revision: CGAL-2.3-I-75 $
// release_date : $CGAL_Date: 2001/06/21 $
//
// file : include/CGAL/LEDA/basic.h
// package : cgal_window (1.0.3)
// maintainer : Matthias Baesken <baesken@informatik.uni-trier.de>
// revision : 1.0.3
// revision_date : 25 June 2001
// author(s) : Matthias Baesken, Algorithmic Solutions
//
// coordinator : Matthias Baesken, Trier (<baesken@informatik.uni-trier.de>)
// ======================================================================
#ifndef CGAL_WINDOW_BASIC_H
#define CGAL_WINDOW_BASIC_H
// include system config file
#if defined(CGAL_USE_CGAL_HEADERS)
#include <CGAL/basic.h>
#else
#if !defined(CGAL_CLIB_STD)
#if defined(_MSC_VER)
#define CGAL_CLIB_STD
#else
#define CGAL_CLIB_STD std
#endif
#endif
#endif
#include <CGAL/LEDA/system.h>
// include std header files
#include <iostream>
#include <iomanip>
#include <fstream>
#include <strstream>
#include <cstddef>
#include <cstdlib>
#include <cmath>
// include basic LEDA headers
#include <CGAL/LEDA/global.h>
#include <string>
namespace CGAL {
extern __exportF void leda_wait(double sec);
/*{\Mfunc suspends execution for $sec$ seconds.}*/
// maximal and minimal values for some numerical types
inline int Max_Value(int& x) { return x = MAXINT; }
inline int Min_Value(int& x) { return x = -MAXINT; }
inline double Max_Value(double& x) { return x = MAXDOUBLE;}
inline double Min_Value(double& x) { return x = -MAXDOUBLE;}
extern __exportF double truncate(double x, int k = 10);
/*{\Mfunc returns a double whose mantissa is truncated after $k-1$ bits after the binary point, i.e, if
$x \not= 0$ then the binary representation of the mantissa of the
result has the form d.dddddddd, where the number of d's is equal to $k$.
There is a corresponding function for
|integers|; it has no effect.}*/
}
#endif