mirror of https://github.com/CGAL/cgal
551 lines
15 KiB
C++
551 lines
15 KiB
C++
// Copyright (c) 2003-2006 INRIA Sophia-Antipolis (France).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you may redistribute it under
|
|
// the terms of the Q Public License version 1.0.
|
|
// See the file LICENSE.QPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $URL$
|
|
// $Id$
|
|
//
|
|
//
|
|
// Author(s) : Steve Oudot, David Rey, Mariette Yvinec, Laurent Rineau, Andreas Fabri
|
|
|
|
#ifndef CGAL_COMPLEX_2_IN_TRIANGULATION_3_H
|
|
#define CGAL_COMPLEX_2_IN_TRIANGULATION_3_H
|
|
|
|
// TODO: add the iterators
|
|
// TODO: document the output/input function of C2T3?
|
|
|
|
#include <CGAL/circulator.h>
|
|
#include <CGAL/iterator.h>
|
|
#include <CGAL/Union_find.h>
|
|
#include <set>
|
|
#include <map>
|
|
#include <list>
|
|
#include <vector>
|
|
|
|
namespace CGAL {
|
|
|
|
template < class Tr >
|
|
class Complex_2_in_triangulation_3 {
|
|
|
|
public:
|
|
|
|
typedef Complex_2_in_triangulation_3 < Tr > Self;
|
|
|
|
typedef Tr Triangulation;
|
|
|
|
typedef typename Triangulation::Vertex_handle Vertex_handle;
|
|
typedef typename Triangulation::Cell_handle Cell_handle;
|
|
typedef typename Triangulation::Facet Facet;
|
|
typedef typename Triangulation::Edge Edge;
|
|
|
|
typedef std::list<Facet> Facets;
|
|
typedef std::list<Cell_handle> Cells;
|
|
typedef typename Facets::iterator Facet_list_iterator;
|
|
|
|
typedef std::size_t size_type;
|
|
|
|
typedef Const_circulator_from_container<Facets> Facet_circulator;
|
|
|
|
typedef std::map <std::pair <Vertex_handle, Vertex_handle>,
|
|
std::pair<int, std::list<Facet> > >
|
|
Edge_facet_counter;
|
|
|
|
enum Face_status{ NOT_IN_COMPLEX, ISOLATED, BOUNDARY, REGULAR, SINGULAR};
|
|
|
|
|
|
class Iterator_not_in_complex {
|
|
Self* self;
|
|
public:
|
|
Iterator_not_in_complex(Self* self) : self(self)
|
|
{
|
|
}
|
|
|
|
template <typename Iterator> // Facet or Edges iterators
|
|
bool operator()(Iterator it) const {
|
|
return ! self->is_in_complex(*it);
|
|
}
|
|
}; // end struct Iterator_not_in_complex
|
|
|
|
class Vertex_not_in_complex {
|
|
Self* self;
|
|
public:
|
|
Vertex_not_in_complex(Self* self) : self(self)
|
|
{
|
|
}
|
|
|
|
bool operator()(Vertex_handle v) const { // Takes as argument an iterator to a
|
|
// Vertex, convertible to Vertex_handle.
|
|
return ! self->is_in_complex(v);
|
|
}
|
|
}; // end struct Vertex_not_in_complex
|
|
|
|
class Facet_not_in_complex {
|
|
Self* self;
|
|
public:
|
|
Facet_not_in_complex(Self* self) : self(self)
|
|
{
|
|
}
|
|
|
|
bool operator()(Facet f) const {
|
|
return ! self->is_in_complex(f);
|
|
}
|
|
}; // end struct Facet_not_in_complex
|
|
|
|
class Iterator_not_on_boundary {
|
|
Self* self;
|
|
public:
|
|
Iterator_not_on_boundary(Self* self) : self(self)
|
|
{
|
|
}
|
|
|
|
template <class Edge_iterator>
|
|
bool operator()(Edge_iterator eit) const {
|
|
return self->face_status(*eit)!= BOUNDARY;
|
|
}
|
|
|
|
};
|
|
|
|
typedef Filter_iterator<typename Triangulation::Finite_facets_iterator,
|
|
Iterator_not_in_complex> Facet_iterator;
|
|
typedef Filter_iterator<typename Triangulation::Finite_edges_iterator,
|
|
Iterator_not_in_complex> Edge_iterator;
|
|
|
|
// class to ensure that Vertex_iterator is convertible to Vertex_handle
|
|
class Vertex_iterator :
|
|
public Filter_iterator<typename Triangulation::Finite_vertices_iterator,
|
|
Vertex_not_in_complex>
|
|
{
|
|
typedef typename Triangulation::Finite_vertices_iterator Tr_iterator;
|
|
typedef Filter_iterator<typename Triangulation::Finite_vertices_iterator,
|
|
Vertex_not_in_complex> Base;
|
|
typedef typename Base::Predicate Predicate;
|
|
typedef Vertex_iterator Self;
|
|
public:
|
|
Vertex_iterator(Base i) : Base(i)
|
|
{
|
|
}
|
|
|
|
Self & operator++() { Base::operator++(); return *this; }
|
|
Self & operator--() { Base::operator--(); return *this; }
|
|
Self operator++(int) { Self tmp(*this); ++(*this); return tmp; }
|
|
Self operator--(int) { Self tmp(*this); --(*this); return tmp; }
|
|
|
|
operator Vertex_handle()
|
|
{
|
|
return Vertex_handle(this->base());
|
|
}
|
|
};
|
|
|
|
typedef Filter_iterator<typename Triangulation::Finite_edges_iterator,
|
|
Iterator_not_on_boundary> Boundary_edges_iterator;
|
|
|
|
protected:
|
|
Triangulation& tr;
|
|
Edge_facet_counter edge_facet_counter;
|
|
size_type m_number_of_facets;
|
|
|
|
private:
|
|
// computes and return an ordered pair of Vertex
|
|
std::pair<Vertex_handle, Vertex_handle>
|
|
make_ordered_pair(const Vertex_handle vh1, const Vertex_handle vh2) const {
|
|
if (vh1 < vh2) {
|
|
return std::make_pair(vh1, vh2);
|
|
}
|
|
else {
|
|
return std::make_pair(vh2, vh1);
|
|
}
|
|
}
|
|
|
|
Facet canonical_facet(Cell_handle c, int i) const {
|
|
Cell_handle c2 = c->neighbor(i);
|
|
return (c2 < c) ? std::make_pair(c2,c2->index(c)) : std::make_pair(c,i);
|
|
}
|
|
public:
|
|
|
|
// Constructors
|
|
|
|
Complex_2_in_triangulation_3 (Triangulation& t)
|
|
: tr(t), m_number_of_facets(0)
|
|
{
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
m_number_of_facets = 0;
|
|
edge_facet_counter.clear();
|
|
}
|
|
|
|
// Access functions
|
|
|
|
Triangulation& triangulation()
|
|
{
|
|
return tr;
|
|
}
|
|
|
|
const Triangulation& triangulation() const
|
|
{
|
|
return tr;
|
|
}
|
|
|
|
Face_status face_status (const Facet& f) const {
|
|
return face_status (f.first, f.second);
|
|
}
|
|
|
|
Face_status face_status (const Cell_handle c, const int i) const {
|
|
return (c->is_facet_on_surface(i)) ? REGULAR : NOT_IN_COMPLEX;
|
|
}
|
|
|
|
Face_status face_status (const Edge& e) const {
|
|
return face_status(e.first->vertex(e.second), e.first->vertex(e.third));
|
|
}
|
|
|
|
Face_status face_status (const Vertex_handle& va,
|
|
const Vertex_handle& vb) const
|
|
{
|
|
typename Edge_facet_counter::const_iterator it =
|
|
edge_facet_counter.find(make_ordered_pair(va, vb));
|
|
|
|
if (it == edge_facet_counter.end())
|
|
return NOT_IN_COMPLEX;
|
|
|
|
switch (it->second.first)
|
|
{
|
|
case 0 : return ISOLATED;
|
|
case 1 : return BOUNDARY;
|
|
case 2 : return REGULAR;
|
|
default : return SINGULAR;
|
|
}
|
|
} // end face_status(const Vertex_handle&, const Vertex_handle&)
|
|
|
|
Face_status face_status (Vertex_handle v)
|
|
{
|
|
if(v->is_c2t3_cache_valid() && v->cached_number_of_incident_facets() == 0)
|
|
return NOT_IN_COMPLEX;
|
|
|
|
//test incident edges for REUGALIRITY and count BOUNDARY edges
|
|
typename std::vector<Vertex_handle> vertices;
|
|
vertices.reserve(64);
|
|
tr.incident_vertices(v, std::back_inserter(vertices));
|
|
int number_of_boundary_incident_edges = 0; //COULD BE a Bool
|
|
for (typename std::vector<Vertex_handle>::iterator vit=vertices.begin();
|
|
vit != vertices.end();
|
|
vit++ )
|
|
{
|
|
switch( face_status(v, *vit) )
|
|
{
|
|
case NOT_IN_COMPLEX: case REGULAR: break;
|
|
case BOUNDARY: ++number_of_boundary_incident_edges; break;
|
|
default : return SINGULAR;
|
|
}
|
|
}
|
|
|
|
// from now on incident edges (in complex) are REGULAR or BOUNDARY
|
|
|
|
int i,j;
|
|
union_find_of_incident_facets(v,i,j);
|
|
|
|
if ( i == 0 )
|
|
return NOT_IN_COMPLEX;
|
|
else if ( j > 1 )
|
|
return SINGULAR;
|
|
else // REGULAR OR BOUNDARY
|
|
{
|
|
if (number_of_boundary_incident_edges != 0)
|
|
return BOUNDARY;
|
|
else
|
|
return REGULAR;
|
|
}
|
|
} //end of face_status(Vertex_handle)
|
|
|
|
|
|
// This function should be called only when incident edges
|
|
// are known to be REGULAR OR BOUNDARY
|
|
bool is_regular_or_boundary_for_vertices(Vertex_handle v) {
|
|
int i,j;
|
|
union_find_of_incident_facets(v,i,j);
|
|
return (j == 1);
|
|
}
|
|
|
|
bool is_in_complex (Vertex_handle v) {
|
|
int i,j;
|
|
union_find_of_incident_facets(v,i,j);
|
|
return ( i != 0);
|
|
}
|
|
|
|
// extract the subset F of facets of the complex incident to v
|
|
// set i to the number of facets in F
|
|
// set j to the number of connected component of the adjacency graph
|
|
// of F
|
|
void union_find_of_incident_facets(const Vertex_handle v, int& i, int& j) {
|
|
if( v->is_c2t3_cache_valid() )
|
|
{
|
|
i = v->cached_number_of_incident_facets();
|
|
j = v->cached_number_of_components();
|
|
return;
|
|
}
|
|
|
|
Union_find<Facet> facets;
|
|
incident_facets(v, std::back_inserter(facets));
|
|
|
|
typedef std::map<Vertex_handle,
|
|
typename Union_find<Facet>::handle> Vertex_Set_map;
|
|
typedef typename Vertex_Set_map::iterator Vertex_Set_map_iterator;
|
|
|
|
Vertex_Set_map vsmap;
|
|
|
|
for(typename Union_find<Facet>::iterator it = facets.begin();
|
|
it != facets.end();
|
|
++it){
|
|
const Cell_handle& ch = (*it).first;
|
|
const int& i = (*it).second;
|
|
for(int j=0; j < 3; ++j){
|
|
const Vertex_handle w = ch->vertex(tr.vertex_triple_index(i,j));
|
|
if(w != v){
|
|
Vertex_Set_map_iterator vsm_it = vsmap.find(w);
|
|
if(vsm_it != vsmap.end()){
|
|
facets.unify_sets(vsm_it->second, it);
|
|
} else {
|
|
vsmap.insert(std::make_pair(w, it));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
i = facets.size();
|
|
j = facets.number_of_sets();
|
|
v->set_c2t3_cache(i, j);
|
|
return;
|
|
}
|
|
|
|
bool is_in_complex (const Facet& f) const {
|
|
return is_in_complex (f.first, f.second);
|
|
}
|
|
|
|
bool is_in_complex (const Cell_handle c, const int i) const {
|
|
return face_status(c,i) != NOT_IN_COMPLEX;
|
|
}
|
|
|
|
bool is_in_complex (const Edge& e) const {
|
|
return face_status(e) != NOT_IN_COMPLEX;
|
|
}
|
|
|
|
size_type number_of_facets() const
|
|
{
|
|
return m_number_of_facets;
|
|
}
|
|
|
|
Facet_circulator incident_facets (const Edge& e) {
|
|
typename Edge_facet_counter::iterator it =
|
|
edge_facet_counter.find(make_ordered_pair(e.first->vertex(e.second),
|
|
e.first->vertex(e.third)));
|
|
|
|
if( it == edge_facet_counter.end() )
|
|
return Facet_circulator();
|
|
else
|
|
{
|
|
// position the circulator on the first element of the facets list
|
|
Facets& lof = it->second.second;
|
|
return Facet_circulator(&lof);
|
|
}
|
|
}
|
|
|
|
/** @TODO: document this class in the
|
|
SurfaceMeshComplex_2InTriangulation_3 concept.
|
|
*/
|
|
template <typename OutputIterator>
|
|
OutputIterator incident_facets(const Vertex_handle v, OutputIterator it)
|
|
{
|
|
// TODO: review this function (Laurent Rineau)
|
|
|
|
// We assume that for the generated facets the Cell_handle is smaller than the opposite one
|
|
tr.incident_facets(v,
|
|
CGAL::filter_output_iterator(it,
|
|
Facet_not_in_complex(this)));
|
|
return it;
|
|
}
|
|
|
|
// Setting functions
|
|
|
|
void set_in_complex (const Facet& f) {
|
|
set_in_complex (f.first, f.second);
|
|
}
|
|
|
|
void set_in_complex (const Cell_handle c, const int i) {
|
|
change_in_complex_status<true, false>(c, i);
|
|
}
|
|
|
|
template <bool in_complex, bool force_modification>
|
|
void change_in_complex_status(const Cell_handle c, const int i)
|
|
{
|
|
// if not already in the complex
|
|
if ( force_modification ||
|
|
(in_complex ?
|
|
face_status (c, i) == NOT_IN_COMPLEX
|
|
: face_status (c, i) != NOT_IN_COMPLEX) )
|
|
{
|
|
if(in_complex)
|
|
++m_number_of_facets;
|
|
else
|
|
--m_number_of_facets;
|
|
|
|
Facet f = canonical_facet(c, i);
|
|
|
|
c->set_facet_on_surface(i, in_complex);
|
|
|
|
switch( tr.dimension() )
|
|
{
|
|
case 3:
|
|
{
|
|
const Cell_handle& c2 = c->neighbor(i);
|
|
const int& i2 = c2->index(c);
|
|
c2->set_facet_on_surface(i2, in_complex);
|
|
}
|
|
break;
|
|
case 2:
|
|
break;
|
|
default:
|
|
CGAL_assertion(false);
|
|
}
|
|
|
|
const int dimension_plus_1 = tr.dimension() + 1;
|
|
|
|
// update c2t3 for edges of f
|
|
// We consider only pairs made by vertices without i
|
|
for (int j = 0; j < dimension_plus_1; j++) {
|
|
for (int k = j + 1; k < dimension_plus_1; k++) {
|
|
if ( (i != j) && (i != k) ){
|
|
|
|
const std::pair<Vertex_handle, Vertex_handle> e =
|
|
make_ordered_pair(c->vertex(j),
|
|
c->vertex(k));
|
|
|
|
if(in_complex)
|
|
{
|
|
(edge_facet_counter[e]).first++;
|
|
(edge_facet_counter[e]).second.push_back(f); // @TODO: beurk.
|
|
// Recode this!
|
|
}
|
|
else
|
|
{
|
|
typename Edge_facet_counter::iterator it =
|
|
edge_facet_counter.find(e);
|
|
|
|
CGAL_assertion( it != edge_facet_counter.end() );
|
|
|
|
if(--(it->second.first) > 0)
|
|
it->second.second.remove(f);
|
|
else
|
|
edge_facet_counter.erase(it);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// update c2t3 for vertices of f
|
|
for (int j = 0; j < dimension_plus_1; j++) {
|
|
if (j != i)
|
|
c->vertex(j)->invalidate_c2t3_cache();
|
|
}
|
|
}
|
|
}
|
|
|
|
void remove_from_complex (const Facet& f) {
|
|
remove_from_complex (f.first, f.second);
|
|
}
|
|
|
|
void remove_from_complex (const Cell_handle c, const int i) {
|
|
change_in_complex_status<false, false>(c, i);
|
|
}
|
|
|
|
Facet_iterator facets_begin(){
|
|
return CGAL::filter_iterator(tr.finite_facets_end(),
|
|
Iterator_not_in_complex(this),
|
|
tr.finite_facets_begin());
|
|
}
|
|
|
|
Facet_iterator facets_end(){
|
|
return CGAL::filter_iterator(tr.finite_facets_end(),
|
|
Iterator_not_in_complex(this));
|
|
}
|
|
|
|
|
|
Edge_iterator edges_begin(){
|
|
return CGAL::filter_iterator(tr.finite_edges_end(),
|
|
Iterator_not_in_complex(this),
|
|
tr.finite_edges_begin());
|
|
}
|
|
|
|
Edge_iterator edges_end(){
|
|
return CGAL::filter_iterator(tr.finite_edges_end(),
|
|
Iterator_not_in_complex(this));
|
|
}
|
|
|
|
Vertex_iterator vertices_begin(){
|
|
return CGAL::filter_iterator(tr.finite_vertices_end(),
|
|
Vertex_not_in_complex(this),
|
|
tr.finite_vertices_begin());
|
|
}
|
|
|
|
Vertex_iterator vertices_end(){
|
|
return CGAL::filter_iterator(tr.finite_vertices_end(),
|
|
Vertex_not_in_complex(this));
|
|
}
|
|
|
|
Boundary_edges_iterator boundary_edges_begin() {
|
|
return CGAL::filter_iterator(tr.finite_edges_end(),
|
|
Iterator_not_on_boundary(this),
|
|
tr.finite_edges_begin());
|
|
}
|
|
|
|
Boundary_edges_iterator boundary_edges_end() {
|
|
return CGAL::filter_iterator(tr.finite_edges_end(),
|
|
Iterator_not_on_boundary(this));
|
|
}
|
|
|
|
#ifdef CGAL_MESH_3_IO_H
|
|
static
|
|
std::string io_signature()
|
|
{
|
|
return Get_io_signature<Tr>()();
|
|
}
|
|
#endif
|
|
}; // end Complex_2_in_triangulation_3
|
|
|
|
template < class Tr >
|
|
std::istream &
|
|
operator>> (std::istream& is, Complex_2_in_triangulation_3<Tr>& c2t3)
|
|
{
|
|
c2t3.clear();
|
|
is >> c2t3.triangulation();
|
|
|
|
// restore datas of c2t3
|
|
for(typename Tr::Finite_facets_iterator fit =
|
|
c2t3.triangulation().finite_facets_begin();
|
|
fit != c2t3.triangulation().finite_facets_end();
|
|
++fit)
|
|
if(fit->first->is_facet_on_surface(fit->second))
|
|
c2t3.template change_in_complex_status<true, true>(fit->first, fit->second);
|
|
|
|
return is;
|
|
}
|
|
|
|
template < class Tr>
|
|
std::ostream &
|
|
operator<< (std::ostream& os, const Complex_2_in_triangulation_3<Tr> &c2t3)
|
|
{
|
|
return os << c2t3.triangulation();
|
|
}
|
|
|
|
} // end namespace CGAL
|
|
|
|
#endif // CGAL_COMPLEX_2_IN_TRIANGULATION_3_H
|