cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_Evaluate...

47 lines
1.8 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous}
\ccDefinition
This \ccc{AdaptableFunctor} interprets a \ccc{PolynomialTraits_d::Polynomial_d}
as a homogeneous polynomial with respect to one variable, an provides respective evaluation.
\ccRefines
\ccc{AdaptableFunctor}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{evaluate_homogenouse}
\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}
\ccOperations
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Innermost_coefficient u,
PolynomialTraits_d::Innermost_coefficient v);}
{ return $p(u,v)$, with respect to the outermost variable. \\
The homogeneous degree is considered as equal to the degree of $p$. }
%\ccMethod{result_type operator()(first_argument_type p,
% second_argument_type u,
% third_argument_type v,
% fourth_argument_type h);}
% { return $p(u,v)$, with respect to the outermost variable. \\
% The homogeneous degree is $h$.
% \ccPrecond: $h \geq degree(p)$ }
\ccMethod{result_type operator()( PolynomialTraits_d::Polynomial_d p,
PolynomialTraits_d::Innermost_coefficient u,
PolynomialTraits_d::Innermost_coefficient v,
int i);}
{ return $p(u,v)$, with respect to the variable $x_i$. \\
The homogeneous degree is considered as equal to the $degree(p,i)$.
\ccPrecond $0 \leq i < d$}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\end{ccRefConcept}