mirror of https://github.com/CGAL/cgal
47 lines
1.8 KiB
TeX
47 lines
1.8 KiB
TeX
\begin{ccRefConcept}{PolynomialTraits_d::EvaluateHomogeneous}
|
|
\ccDefinition
|
|
|
|
This \ccc{AdaptableFunctor} interprets a \ccc{PolynomialTraits_d::Polynomial_d}
|
|
as a homogeneous polynomial with respect to one variable, an provides respective evaluation.
|
|
|
|
\ccRefines
|
|
\ccc{AdaptableFunctor}
|
|
|
|
\ccTypes
|
|
|
|
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
|
|
\ccCreationVariable{evaluate_homogenouse}
|
|
\ccTypedef{typedef PolynomialTraits_d::Coefficient result_type;}{}
|
|
|
|
\ccOperations
|
|
\ccMethod{result_type operator()(PolynomialTraits_d::Polynomial_d p,
|
|
PolynomialTraits_d::Innermost_coefficient u,
|
|
PolynomialTraits_d::Innermost_coefficient v);}
|
|
{ return $p(u,v)$, with respect to the outermost variable. \\
|
|
The homogeneous degree is considered as equal to the degree of $p$. }
|
|
|
|
%\ccMethod{result_type operator()(first_argument_type p,
|
|
% second_argument_type u,
|
|
% third_argument_type v,
|
|
% fourth_argument_type h);}
|
|
% { return $p(u,v)$, with respect to the outermost variable. \\
|
|
% The homogeneous degree is $h$.
|
|
% \ccPrecond: $h \geq degree(p)$ }
|
|
|
|
\ccMethod{result_type operator()( PolynomialTraits_d::Polynomial_d p,
|
|
PolynomialTraits_d::Innermost_coefficient u,
|
|
PolynomialTraits_d::Innermost_coefficient v,
|
|
int i);}
|
|
{ return $p(u,v)$, with respect to the variable $x_i$. \\
|
|
The homogeneous degree is considered as equal to the $degree(p,i)$.
|
|
\ccPrecond $0 \leq i < d$}
|
|
|
|
%\ccHasModels
|
|
|
|
\ccSeeAlso
|
|
|
|
\ccRefIdfierPage{Polynomial_d}\\
|
|
\ccRefIdfierPage{PolynomialTraits_d}\\
|
|
|
|
\end{ccRefConcept}
|