cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_GcdUpToC...

50 lines
1.7 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::GcdUpToConstantFactor}
\ccDefinition
This \ccc{AdaptableBinaryFunction} computes the $gcd$
{\em up to a constant factor (utcf)} of two polynomials of type
\ccc{PolynomialTraits_d::Polynomial_d}.
In case the base ring $R$, \ccc{PolynomialTraits_d::Innermost_coefficient},
is not a \ccc{UFDomain} or not a \ccc{Field} the polynomial ring
$R[x_0,\dots,x_{d-1}]$ ,\ccc{PolynomialTraits_d::Polynomial_d}, may not
possess greatest common divisor. However, since the $R$ is an integral
domain one can consider its quotient field $Q(R)$ for which gcds of
polynomials exist. A $gcd\_up_to_constant_factor(f,g)$ is a denominator-free
constant multiple of $gcd(f,g)$ in $Q(R)[x_0,\dots,x_{d-1}]$.
{\bf Note:} It may not be a divisor of $f$ and $g$ in $R[x_0,\dots,x_{d-1}]$.
\ccRefines
\ccc{AdaptableBinaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccCreationVariable{gcd_utcf}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type f,
second_argument_type g);}
{return a denominator-free, constant multiple of $gcd(f,g)$}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::IntegralDivisionUpToConstantFactor}\\
\ccRefIdfierPage{PolynomialTraits_d::UnivariateContentUpToConstantFactor}\\
\ccRefIdfierPage{PolynomialTraits_d::SquareFreeFactorizationUpToConstantFactor}\\
\end{ccRefConcept}