cgal/Polynomial/doc_tex/Polynomial_ref/PolynomialTraits_d_PseudoDi...

49 lines
1.7 KiB
TeX

\begin{ccRefConcept}{PolynomialTraits_d::PseudoDivisionQuotient}
\ccDefinition
This \ccc{AdaptableBinaryFunction} computes the quotient of the so called {\em pseudo division}
of to polynomials $f$ and $g$.
Given $f$ and $g != 0$, compute quotient $q$ and remainder $r$
such that $D \cdot f = g \cdot q + r$ and $degree(r) < degree(g)$,
where $ D = leading\_coefficient(g)^{max(0, degree(f)-degree(g)+1)}$
\ccRefines
\ccc{AdaptableBinaryFunction}
\ccTypes
\ccSetThreeColumns{xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}{xxx}{}
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d result_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d first_argument_type;}{}\ccGlue
\ccTypedef{typedef PolynomialTraits_d::Polynomial_d second_argument_type;}{}
\ccOperations
\ccMethod{result_type operator()(first_argument_type f,
second_argument_type g);}{
Returns the quotient $q$ of the pseudo division of $f$ and $g$ with
respect to the outermost variable $x_{d-1}$.}
\begin{ccAdvanced}
\ccMethod{result_type operator()(first_argument_type f,
second_argument_type g,
int i);}{
Returns the quotient $q$ of the pseudo division of $f$ and $g$ with
respect to variable $x_i$.
\ccPrecond $0 \leq i < d$ }
\end{ccAdvanced}
%\ccHasModels
\ccSeeAlso
\ccRefIdfierPage{Polynomial_d}\\
\ccRefIdfierPage{PolynomialTraits_d}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivision}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionRemainder}\\
\ccRefIdfierPage{PolynomialTraits_d::PseudoDivisionQuotient}\\
\end{ccRefConcept}