cgal/Packages/Cartesian_kernel/include/CGAL/Cartesian/Circle_2.h

342 lines
9.0 KiB
C++

// Copyright (c) 1997-2004 Utrecht University (The Netherlands),
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
// and Tel-Aviv University (Israel). All rights reserved.
//
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public License as
// published by the Free Software Foundation; version 2.1 of the License.
// See the file LICENSE.LGPL distributed with CGAL.
//
// Licensees holding a valid commercial license may use this file in
// accordance with the commercial license agreement provided with the software.
//
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
//
// $Source$
// $Revision$ $Date$
// $Name$
//
// Author(s) : Andreas Fabri, Herve Bronnimann
#ifndef CGAL_CARTESIAN_CIRCLE_2_H
#define CGAL_CARTESIAN_CIRCLE_2_H
#include <CGAL/utility.h>
#include <CGAL/Interval_arithmetic.h>
#include <CGAL/Cartesian/predicates_on_points_2.h>
CGAL_BEGIN_NAMESPACE
template <class R_ >
class CircleC2
{
typedef typename R_::FT FT;
typedef typename R_::Circle_2 Circle_2;
typedef typename R_::Point_2 Point_2;
typedef typename R_::Aff_transformation_2 Aff_transformation_2;
typedef Triple<Point_2, FT, Orientation> Rep;
typedef typename R_::template Handle<Rep>::type Base;
Base base;
public:
typedef R_ R;
CircleC2() {}
CircleC2(const Point_2 &center, const FT &squared_radius = FT(0),
const Orientation &orient = COUNTERCLOCKWISE) // Is this new?
{
CGAL_kernel_precondition( ( squared_radius >= FT(0) ) &&
( orient != COLLINEAR) );
base = Rep(center, squared_radius, orient);
}
CircleC2(const Point_2 &center, const Orientation &orient) // Is this new?
{
CGAL_kernel_precondition( orient != COLLINEAR );
base = Rep(center, FT(0), orient);
}
CircleC2(const Point_2 &p, const Point_2 &q,
const Orientation &orient = COUNTERCLOCKWISE) // And this too?
{ // FIXME : construction
CGAL_kernel_precondition( orient != COLLINEAR);
typename R::Compute_squared_distance_2 squared_distance;
typename R::Construct_midpoint_2 midpoint;
if (p != q) {
Point_2 center = midpoint(p, q);
base = Rep(center, squared_distance(p, center), orient);
} else
base = Rep(p, FT(0), orient);
}
CircleC2(const Point_2 &p, const Point_2 &q, const Point_2 &r)
{ // FIXME : construction
typename R::Orientation_2 orientation;
typename R::Compute_squared_distance_2 squared_distance;
typename R::Construct_circumcenter_2 circumcenter;
Orientation orient = orientation(p, q, r);
CGAL_kernel_precondition( orient != COLLINEAR);
Point_2 center = circumcenter(p, q, r);
base = Rep(center, squared_distance(p, center), orient);
}
bool operator==(const CircleC2 &s) const;
bool operator!=(const CircleC2 &s) const;
const Point_2 & center() const
{
return get(base).first;
}
const FT & squared_radius() const
{
return get(base).second;
}
Orientation orientation() const
{
return get(base).third;
}
Circle_2 opposite() const;
Circle_2 orthogonal_transform(const Aff_transformation_2 &t) const;
Oriented_side oriented_side(const Point_2 &p) const;
Bounded_side bounded_side(const Point_2 &p) const;
bool has_on_boundary(const Point_2 &p) const;
bool has_on_negative_side(const Point_2 &p) const;
bool has_on_positive_side(const Point_2 &p) const;
bool has_on_bounded_side(const Point_2 &p) const;
bool has_on_unbounded_side(const Point_2 &p) const;
bool is_degenerate() const;
Bbox_2 bbox() const;
};
template < class R >
CGAL_KERNEL_INLINE
bool
CircleC2<R>::operator==(const CircleC2<R> &c) const
{ // FIXME : predicate
if (CGAL::identical(base, c.base))
return true;
return center() == c.center() &&
squared_radius() == c.squared_radius() &&
orientation() == c.orientation();
}
template < class R >
inline
bool
CircleC2<R>::operator!=(const CircleC2<R> &c) const
{
return !(*this == c);
}
template < class R >
CGAL_KERNEL_MEDIUM_INLINE
Oriented_side
CircleC2<R>::
oriented_side(const typename CircleC2<R>::Point_2 &p) const
{
return Oriented_side(bounded_side(p) * orientation());
}
template < class R >
CGAL_KERNEL_INLINE
Bounded_side
CircleC2<R>::
bounded_side(const typename CircleC2<R>::Point_2 &p) const
{
typename R::Compute_squared_distance_2 squared_distance;
return Bounded_side(CGAL_NTS compare(squared_radius(),
squared_distance(center(),p)));
}
template < class R >
inline
bool
CircleC2<R>::
has_on_boundary(const typename CircleC2<R>::Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDARY;
}
template < class R >
inline
bool
CircleC2<R>::
has_on_bounded_side(const typename CircleC2<R>::Point_2 &p) const
{
return bounded_side(p) == ON_BOUNDED_SIDE;
}
template < class R >
inline
bool
CircleC2<R>::
has_on_unbounded_side(const typename CircleC2<R>::Point_2 &p) const
{
return bounded_side(p) == ON_UNBOUNDED_SIDE;
}
template < class R >
CGAL_KERNEL_INLINE
bool
CircleC2<R>::
has_on_negative_side(const typename CircleC2<R>::Point_2 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
return has_on_unbounded_side(p);
return has_on_bounded_side(p);
}
template < class R >
CGAL_KERNEL_INLINE
bool
CircleC2<R>::
has_on_positive_side(const typename CircleC2<R>::Point_2 &p) const
{
if (orientation() == COUNTERCLOCKWISE)
return has_on_bounded_side(p);
return has_on_unbounded_side(p);
}
template < class R >
inline
bool
CircleC2<R>::is_degenerate() const
{
return CGAL_NTS is_zero(squared_radius());
}
template < class R >
inline
typename CircleC2<R>::Circle_2
CircleC2<R>::opposite() const
{
return CircleC2<R>(center(),
squared_radius(),
CGAL::opposite(orientation()) );
}
template < class R >
CGAL_KERNEL_INLINE
Bbox_2
CircleC2<R>::bbox() const
{
typename R::Construct_bbox_2 construct_bbox_2;
Bbox_2 b = construct_bbox_2(center());
Interval_nt<> x (b.xmin(), b.xmax());
Interval_nt<> y (b.ymin(), b.ymax());
Interval_nt<> sqr = CGAL::to_interval(squared_radius());
Interval_nt<> r = CGAL::sqrt(sqr);
Interval_nt<> minx = x-r;
Interval_nt<> maxx = x+r;
Interval_nt<> miny = y-r;
Interval_nt<> maxy = y+r;
return Bbox_2(minx.inf(), miny.inf(), maxx.sup(), maxy.sup());
}
template < class R >
CGAL_KERNEL_INLINE
typename CircleC2<R>::Circle_2
CircleC2<R>::orthogonal_transform
(const typename CircleC2<R>::Aff_transformation_2 &t) const
{
typename R::Vector_2 vec(FT(1), FT(0) ); // unit vector
vec = vec.transform(t); // transformed
FT sq_scale = vec.squared_length(); // squared scaling factor
return CircleC2<R>(t.transform(center()),
sq_scale * squared_radius(),
t.is_even() ? orientation()
: CGAL::opposite(orientation()));
}
#ifndef CGAL_NO_OSTREAM_INSERT_CIRCLEC2
template < class R >
CGAL_KERNEL_INLINE
std::ostream &
operator<<(std::ostream &os, const CircleC2<R> &c)
{
switch(os.iword(IO::mode)) {
case IO::ASCII :
os << c.center() << ' ' << c.squared_radius() << ' '
<< static_cast<int>(c.orientation());
break;
case IO::BINARY :
os << c.center();
write(os, c.squared_radius());
write(os, static_cast<int>(c.orientation()));
break;
default:
os << "CircleC2(" << c.center() << ", " << c.squared_radius() ;
switch (c.orientation()) {
case CLOCKWISE:
os << ", clockwise)";
break;
case COUNTERCLOCKWISE:
os << ", counterclockwise)";
break;
default:
os << ", collinear)";
break;
}
break;
}
return os;
}
#endif // CGAL_NO_OSTREAM_INSERT_CIRCLEC2
#ifndef CGAL_NO_ISTREAM_EXTRACT_CIRCLEC2
template < class R >
CGAL_KERNEL_INLINE
std::istream&
operator>>(std::istream &is, CircleC2<R> &c)
{
typename R::Point_2 center;
typename R::FT squared_radius;
int o;
switch(is.iword(IO::mode)) {
case IO::ASCII :
is >> center >> squared_radius >> o;
break;
case IO::BINARY :
is >> center;
read(is, squared_radius);
is >> o;
break;
default:
std::cerr << "" << std::endl;
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
break;
}
if (is)
c = CircleC2<R>(center, squared_radius,
static_cast<Orientation>(o));
return is;
}
#endif // CGAL_NO_ISTREAM_EXTRACT_CIRCLEC2
CGAL_END_NAMESPACE
#endif // CGAL_CARTESIAN_CIRCLE_2_H