mirror of https://github.com/CGAL/cgal
305 lines
6.7 KiB
C++
305 lines
6.7 KiB
C++
// Copyright (c) 2000 Utrecht University (The Netherlands),
|
|
// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),
|
|
// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg
|
|
// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),
|
|
// and Tel-Aviv University (Israel). All rights reserved.
|
|
//
|
|
// This file is part of CGAL (www.cgal.org); you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public License as
|
|
// published by the Free Software Foundation; version 2.1 of the License.
|
|
// See the file LICENSE.LGPL distributed with CGAL.
|
|
//
|
|
// Licensees holding a valid commercial license may use this file in
|
|
// accordance with the commercial license agreement provided with the software.
|
|
//
|
|
// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
|
|
// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
|
//
|
|
// $Source$
|
|
// $Revision$ $Date$
|
|
// $Name$
|
|
//
|
|
// Author(s) : Andreas Fabri, Herve Bronnimann
|
|
|
|
#ifndef CGAL_CARTESIAN_VECTOR_2_H
|
|
#define CGAL_CARTESIAN_VECTOR_2_H
|
|
|
|
#include <CGAL/Origin.h>
|
|
#include <CGAL/Twotuple.h>
|
|
|
|
CGAL_BEGIN_NAMESPACE
|
|
|
|
template < class R_ >
|
|
class VectorC2
|
|
{
|
|
typedef typename R_::FT FT;
|
|
typedef typename R_::Point_2 Point_2;
|
|
typedef typename R_::Vector_2 Vector_2;
|
|
typedef typename R_::Segment_2 Segment_2;
|
|
typedef typename R_::Ray_2 Ray_2;
|
|
typedef typename R_::Line_2 Line_2;
|
|
typedef typename R_::Direction_2 Direction_2;
|
|
typedef typename R_::Aff_transformation_2 Aff_transformation_2;
|
|
|
|
typedef Twotuple<FT> Rep;
|
|
typedef typename R_::template Handle<Rep>::type Base;
|
|
|
|
Base base;
|
|
|
|
public:
|
|
typedef R_ R;
|
|
|
|
VectorC2() {}
|
|
|
|
VectorC2(const Null_vector &n)
|
|
{ *this = R().construct_vector_2_object()(n); }
|
|
|
|
VectorC2(const Point_2 &a, const Point_2 &b)
|
|
{ *this = R().construct_vector_2_object()(a, b); }
|
|
|
|
VectorC2(const Segment_2 &s)
|
|
{ *this = R().construct_vector_2_object()(s); }
|
|
|
|
VectorC2(const Ray_2 &r)
|
|
{ *this = R().construct_vector_2_object()(r); }
|
|
|
|
VectorC2(const Line_2 &l)
|
|
{ *this = R().construct_vector_2_object()(l); }
|
|
|
|
VectorC2(const FT &x, const FT &y)
|
|
: base(x, y) {}
|
|
|
|
VectorC2(const FT &hx, const FT &hy, const FT &hw)
|
|
{
|
|
if (hw != FT(1))
|
|
base = Rep(hx/hw, hy/hw);
|
|
else
|
|
base = Rep(hx, hy);
|
|
}
|
|
|
|
const FT & x() const
|
|
{
|
|
return get(base).e0;
|
|
}
|
|
const FT & y() const
|
|
{
|
|
return get(base).e1;
|
|
}
|
|
|
|
const FT & hx() const
|
|
{
|
|
return x();
|
|
}
|
|
const FT & hy() const
|
|
{
|
|
return y();
|
|
}
|
|
FT hw() const
|
|
{
|
|
return FT(1);
|
|
}
|
|
|
|
const FT & cartesian(int i) const;
|
|
const FT & operator[](int i) const;
|
|
FT homogeneous(int i) const;
|
|
|
|
int dimension() const
|
|
{
|
|
return 2;
|
|
}
|
|
|
|
Vector_2 operator+(const VectorC2 &w) const;
|
|
Vector_2 operator-(const VectorC2 &w) const;
|
|
Vector_2 operator-() const;
|
|
FT squared_length() const;
|
|
Vector_2 operator/(const FT &c) const;
|
|
Direction_2 direction() const;
|
|
|
|
Vector_2 perpendicular(const Orientation &o) const;
|
|
Vector_2 transform(const Aff_transformation_2 &t) const
|
|
{
|
|
return t.transform(*this);
|
|
}
|
|
};
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
bool
|
|
operator==(const VectorC2<R> &v, const VectorC2<R> &w)
|
|
{
|
|
return w.x() == v.x() && w.y() == v.y();
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator!=(const VectorC2<R> &v, const VectorC2<R> &w)
|
|
{
|
|
return !(v == w);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator==(const VectorC2<R> &v, const Null_vector &)
|
|
{
|
|
return CGAL_NTS is_zero(v.x()) && CGAL_NTS is_zero(v.y());
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator==(const Null_vector &n, const VectorC2<R> &v)
|
|
{
|
|
return v == n;
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator!=(const VectorC2<R> &v, const Null_vector &n)
|
|
{
|
|
return !(v == n);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
bool
|
|
operator!=(const Null_vector &n, const VectorC2<R> &v)
|
|
{
|
|
return !(v == n);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
const typename VectorC2<R>::FT &
|
|
VectorC2<R>::cartesian(int i) const
|
|
{
|
|
CGAL_kernel_precondition( (i == 0) || (i == 1) );
|
|
return (i == 0) ? x() : y();
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
const typename VectorC2<R>::FT &
|
|
VectorC2<R>::operator[](int i) const
|
|
{
|
|
return cartesian(i);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
typename VectorC2<R>::FT
|
|
VectorC2<R>::homogeneous(int i) const
|
|
{
|
|
return (i == 2) ? FT(1) : cartesian(i);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
typename VectorC2<R>::Vector_2
|
|
VectorC2<R>::operator+(const VectorC2<R> &w) const
|
|
{
|
|
return VectorC2<R>(x() + w.x(), y() + w.y());
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
typename VectorC2<R>::Vector_2
|
|
VectorC2<R>::operator-(const VectorC2<R> &w) const
|
|
{
|
|
return VectorC2<R>(x() - w.x(), y() - w.y());
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename VectorC2<R>::Vector_2
|
|
VectorC2<R>::operator-() const
|
|
{
|
|
return R().construct_opposite_vector_2_object()(*this);
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
typename VectorC2<R>::FT
|
|
VectorC2<R>::squared_length() const
|
|
{
|
|
return CGAL_NTS square(x()) + CGAL_NTS square(y());
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_INLINE
|
|
typename VectorC2<R>::Vector_2
|
|
VectorC2<R>::
|
|
operator/(const typename VectorC2<R>::FT &c) const
|
|
{
|
|
return VectorC2<R>( x()/c, y()/c);
|
|
}
|
|
|
|
template < class R >
|
|
inline
|
|
typename VectorC2<R>::Direction_2
|
|
VectorC2<R>::direction() const
|
|
{
|
|
return Direction_2(x(), y());
|
|
}
|
|
|
|
template < class R >
|
|
CGAL_KERNEL_MEDIUM_INLINE
|
|
typename VectorC2<R>::Vector_2
|
|
VectorC2<R>::perpendicular(const Orientation &o) const
|
|
{
|
|
CGAL_kernel_precondition( o != COLLINEAR );
|
|
if (o == COUNTERCLOCKWISE)
|
|
return VectorC2<R>(-y(), x());
|
|
else
|
|
return VectorC2<R>(y(), -x());
|
|
}
|
|
|
|
#ifndef CGAL_NO_OSTREAM_INSERT_VECTORC2
|
|
template < class R >
|
|
std::ostream &
|
|
operator<<(std::ostream &os, const VectorC2<R> &v)
|
|
{
|
|
switch(os.iword(IO::mode)) {
|
|
case IO::ASCII :
|
|
return os << v.x() << ' ' << v.y();
|
|
case IO::BINARY :
|
|
write(os, v.x());
|
|
write(os, v.y());
|
|
return os;
|
|
default:
|
|
return os << "VectorC2(" << v.x() << ", " << v.y() << ')';
|
|
}
|
|
}
|
|
#endif // CGAL_NO_OSTREAM_INSERT_VECTORC2
|
|
|
|
#ifndef CGAL_NO_ISTREAM_EXTRACT_VECTORC2
|
|
template < class R >
|
|
std::istream &
|
|
operator>>(std::istream &is, VectorC2<R> &p)
|
|
{
|
|
typename R::FT x, y;
|
|
switch(is.iword(IO::mode)) {
|
|
case IO::ASCII :
|
|
is >> x >> y;
|
|
break;
|
|
case IO::BINARY :
|
|
read(is, x);
|
|
read(is, y);
|
|
break;
|
|
default:
|
|
std::cerr << "" << std::endl;
|
|
std::cerr << "Stream must be in ascii or binary mode" << std::endl;
|
|
break;
|
|
}
|
|
if (is)
|
|
p = VectorC2<R>(x, y);
|
|
return is;
|
|
}
|
|
#endif // CGAL_NO_ISTREAM_EXTRACT_VECTORC2
|
|
|
|
CGAL_END_NAMESPACE
|
|
|
|
#endif // CGAL_CARTESIAN_VECTOR_2_H
|