cgal/Modular_arithmetic/doc_tex/Modular_arithmetic_ref/Modularizable.tex

36 lines
1.2 KiB
TeX

\begin{ccRefConcept}{Modularizable}
\ccDefinition
An algebraic structure is called \ccRefName, if there is a suitable mapping
into an algebraic structure which is based on the type \ccc{CGAL::Residue}.
For scalar types, e.g. Integers, this mapping is just the canonical homomorphism
into the type \ccc{CGAL::Residue}. For compound types, e.g. Polynomials,
the mapping is applied to the coefficients of the compound type.
The mapping is provided via \ccc{CGAL::Modular_traits<Modularizable>},
being a model of \ccc{ModularTraits}.
\ccHasModels
\ccRefIdfierPage{int}\\
\ccRefIdfierPage{long}\\
\ccRefIdfierPage{CORE::BigInt}\\
\ccRefIdfierPage{CORE::BigRat}\\
\ccRefIdfierPage{CGAL::Gmpz}\\
\ccRefIdfierPage{CGAL::Gmpq}\\
\ccRefIdfierPage{leda::integer}\\
\ccRefIdfierPage{leda::rational}\\
\ccRefIdfierPage{mpz_class}\\
\ccRefIdfierPage{mpq_class}\\
\ccRefIdfierPage{CGAL::Quotient<NT>}, depends on template argument.\\
\ccRefIdfierPage{CGAL::Lazy_exact_nt<NT>}, depends on template argument.\\
\ccRefIdfierPage{CGAL::Sqrt_extension<NT,ROOT>}, depends on template arguments.\\
\ccRefIdfierPage{CGAL::Polynomial<Coeff>}, depends on template argument.\\
\ccSeeAlso
\ccRefIdfierPage{CGAL::Residue}\\
\ccRefIdfierPage{CGAL::Modular_traits<T>}\\
\end{ccRefConcept}