cgal/Triangulation_3/include/CGAL/Triangulation_segment_trave...

1106 lines
38 KiB
C++

// Copyright (c) 2012 INRIA Sophia-Antipolis (France).
// All rights reserved.
//
// This file is part of CGAL (www.cgal.org).
//
// $URL$
// $Id$
// SPDX-License-Identifier: GPL-3.0-or-later OR LicenseRef-Commercial
//
// Author(s): Thijs van Lankveld, Jane Tournois
#ifndef CGAL_TRIANGULATION_SEGMENT_TRAVERSER_3_H
#define CGAL_TRIANGULATION_SEGMENT_TRAVERSER_3_H
#include <CGAL/license/Triangulation_3.h>
#include <iostream>
#include <utility>
#include <CGAL/assertions.h>
#include <CGAL/Triangulation_utils_3.h>
#include <CGAL/Triangulation_data_structure_3.h>
#include <CGAL/Triangulation_cell_base_3.h>
#include <CGAL/Triangulation_vertex_base_3.h>
#include <CGAL/Triangulation_simplex_3.h>
#include <optional>
// If defined, type casting is done statically,
// reducing type-safety overhead.
#define CGAL_TST_ASSUME_CORRECT_TYPES
namespace CGAL {
template < class Tr, class Inc >
class Triangulation_segment_cell_iterator_3;
namespace internal {
template < class Tr >
struct Incrementer {
typedef Incrementer<Tr> Self;
typedef Triangulation_segment_cell_iterator_3<Tr,Self> SCI; // describes the type of iterator expected by the incrementer.
Incrementer() {}
void increment( SCI& sci ) { sci.walk_to_next(); }
}; // struct Incrementer
} // namespace internal
// provides an iterator over the cells intersected by a line segment.
/*
* The `Triangulation_segment_traverser_3` iterates over the cells
* of a `Triangulation_3` by following a straight line segment \f$ st \f$.
*
* This class is closely related to `Triangulation_3::locate(...)`.
* However, unlike this `locate(...)` method, all the cells traversed
* by the `Triangulation_segment_traverser_3` intersect the interior of the line
* segment \f$ st \f$.
*
* Traversal starts from a cell containing \f$ s \f$ and it ends in a cell containing
* \f$ t \f$.
* If \f$ st \f$ is coplanar with a facet or collinear with an edge, at most one of the
* incident cells is traversed.
* If \f$ st \f$ intersects an edge or vertex, at most two incident cells are traversed:
* the cells intersected by \f$ st \f$ strictly in their interior.
*
* If \f$ s \f$ lies on the convex hull, traversal starts in an incident cell inside
* the convex hull. Similarly, if \f$ t \f$ lies on the convex hull, traversal ends in
* an adjacent cell inside the convex hull.
*
* Both \f$ s \f$ and \f$ t \f$ may lie outside the convex hull of the triangulation,
* but they must lie within the affine hull of the triangulation. In either case, the
* finite facet of any infinite cells traversed must intersect \f$ st \f$.
*
* The traverser may be applied to any triangulation of dimension > 0.
* However, for triangulations of dimension 1, the functionality is somewhat trivial.
*
* The traverser becomes invalid whenever the triangulation is changed.
*
* \tparam Tr_ is the triangulation type to traverse.
*
* \cgalModels{ForwardIterator}
*
* \sa `Triangulation_3`
* \sa `Forward_circulator_base`
*/
template < class Tr_, class Inc = internal::Incrementer<Tr_> >
class Triangulation_segment_cell_iterator_3
{
typedef Tr_ Tr;
typedef typename Tr::Triangulation_data_structure Tds;
typedef typename Tr::Geom_traits Gt;
typedef Inc Incrementer;
public:
// \name Types
// \{
typedef Tr Triangulation; //< defines the triangulation type.
typedef Triangulation_segment_cell_iterator_3<Tr,Inc>
Segment_cell_iterator; //< defines the segment cell iterator type.
typedef typename Tr::Point Point; //< defines the point type.
typedef typename Tr::Segment Segment; //< defines the line segment type.
typedef typename Tr::Cell Cell; //< defines the type of a cell of the triangulation.
typedef typename Tr::Edge Edge; //< defines the type of an edge of the triangulation.
typedef typename Tr::Facet Facet; //< defines the type of a facet of the triangulation.
typedef typename Tr::Vertex_handle Vertex_handle; //< defines the type of a handle for a vertex in the triangulation.
typedef typename Tr::Cell_handle Cell_handle; //< defines the type of a handle for a cell in the triangulation.
typedef typename Tr::Locate_type Locate_type; //< defines the simplex type returned from location.
struct Simplex //< defines the simplex type
{
Cell_handle cell = {};
Locate_type lt = Locate_type::OUTSIDE_AFFINE_HULL;
int li = -1;
int lj = -1;
};
typedef Cell value_type; //< defines the value type the iterator refers to.
typedef Cell& reference; //< defines the reference type of the iterator.
typedef Cell* pointer; //< defines the pointer type of the iterator.
typedef std::size_t size_type; //< defines the integral type that can hold the size of a sequence.
typedef std::ptrdiff_t difference_type; //< defines the signed integral type that can hold the distance between two iterators.
typedef std::forward_iterator_tag iterator_category; //< defines the iterator category.
// \}
// describes the iterator type when applied to another type of triangulation or incrementer.
template < class Tr2, class Inc2 >
struct Rebind { typedef Triangulation_segment_cell_iterator_3<Tr2,Inc2> Other; };
#if CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3
static auto display_vert(Vertex_handle v)
{
std::stringstream os;
os.precision(17);
if(v->time_stamp() == 0) {
os << "inf";
} else {
os << '#' << v->time_stamp() << "=(" << v->point() << ")";
}
return os.str();
};
static auto display_lt(Locate_type lt) {
std::stringstream os;
switch(lt) {
case Locate_type::VERTEX: os << " VERTEX"; break;
case Locate_type::EDGE: os << " EDGE"; break;
case Locate_type::FACET: os << " FACET"; break;
case Locate_type::CELL: os << " CELL"; break;
case Locate_type::OUTSIDE_CONVEX_HULL: os << " OUTSIDE_CONVEX_HULL"; break;
case Locate_type::OUTSIDE_AFFINE_HULL: os << " OUTSIDE_AFFINE_HULL"; break;
}
return os.str();
}
static auto debug_simplex(Simplex s) {
std::stringstream os;
os.precision(17);
const auto [c, lt, i, j] = s;
if(c == Cell_handle{}) {
os << "end()";
} else {
os << display_vert(c->vertex(0)) << " - " << display_vert(c->vertex(1)) << " - "
<< display_vert(c->vertex(2)) << " - " << display_vert(c->vertex(3));
os << display_lt(lt) << " " << i << " " << j;
}
return os.str();
}
auto debug_iterator() const
{
std::stringstream os;
os.precision(17);
os << " prev: " << debug_simplex(_prev) << "\n cur: " << debug_simplex(_cur);
return os.str();
}
#endif // CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3
private:
typedef Segment_cell_iterator SCI;
friend internal::Incrementer<Tr>;
protected:
// \internal \name Protected Attributes
// \{
// \internal The triangulation to traverse.
const Tr* _tr;
// \}
// The source and target points of the traversal.
// These are also stored as vertices for cheaper equality computation.
Point _source;
Point _target;
Vertex_handle _s_vertex;
Vertex_handle _t_vertex;
// The current cell with its entry point and the previous cell with its
// exit point.
// Note that the current cell will be Cell_handle() after incrementing past
// the first cell containing the target.
Simplex _cur, _prev;
public:
// \name Constructors
// \{
// constructs an iterator.
/* \param tr the triangulation to iterate though. This triangulation must have dimension > 0.
* \param s the source vertex. This vertex must be initialized and cannot be the infinite vertex.
* \param t the target vertex. This vertex must be initialized and cannot be the infinite vertex.
* It cannot equal `s`.
*/
Triangulation_segment_cell_iterator_3( const Tr* tr, Vertex_handle s, Vertex_handle t );
// constructs an iterator.
/* \param tr the triangulation to iterate though. This triangulation must have dimension > 0.
* \param s the source vertex. This vertex must be initialized and cannot be the infinite vertex.
* \param t the target point. This point must be initialized and it cannot be be at the same location as `s`.
* If `tr` has dimension < 3, `t` must lie inside the affine hull of `tr`.
*/
Triangulation_segment_cell_iterator_3( const Tr* tr, Vertex_handle s, const Point& t );
// constructs an iterator.
/* \param tr the triangulation to iterate though. This triangulation must have dimension > 0.
* \param s the source point. This point must be initialized and it cannot be be at the same location as `t`.
* \param t the target vertex. This vertex must be initialized and cannot be the infinite vertex.
* If `tr` has dimension < 3, `s` must lie inside the affine hull of `tr`.
* \param hint the starting point to search for `s`.
*/
Triangulation_segment_cell_iterator_3( const Tr* tr, const Point& s, Vertex_handle t, Cell_handle hint = Cell_handle() );
// constructs an iterator.
/* \param tr the triangulation to iterate though. This triangulation must have dimension > 0.
* \param s the source point. This point must be initialized. If `tr` has dimension < 3, `s` must lie inside
* the affine hull of `tr`.
* \param t the target point. This point must be initialized and it cannot be be at the same location as `s`.
* If `tr` has dimension < 3, `t` must lie inside the affine hull of `tr`.
* \param hint the starting point to search for `s`.
*/
Triangulation_segment_cell_iterator_3( const Tr* tr, const Point& s, const Point& t, Cell_handle hint = Cell_handle() );
// constructs an iterator.
/* \param tr the triangulation to iterate though. This triangulation must have dimension > 0.
* \param S the segment to be traversed. If `tr` has dimension < 3, `S` must lie inside
* the affine hull of `tr`. `S` must not be degenerate, i.e. its source and target must not be equal.
* \param hint the starting point to search for `S`.
*/
Triangulation_segment_cell_iterator_3( const Tr* tr, const Segment& S, Cell_handle hint = Cell_handle() );
// \}
// private constructor that does not initialize the source and target.
// used for the end()
Triangulation_segment_cell_iterator_3(const Tr* tr);
#ifndef CGAL_TST_ASSUME_CORRECT_TYPES
// The virtual destructor is mainly defined to indicate to the casting
// operators that this is a dynamic type.
virtual
#endif
~Triangulation_segment_cell_iterator_3() {}
public:
// \name Accessors
// \{
const Tr* triangulation() const { return _tr; }
// gives the source point of the segment followed.
/* \return the source point.
*/
const Point& source() const { return _source; }
// gives the target point of the segment followed.
/* \return the target point.
*/
const Point& target() const { return _target; }
Vertex_handle target_vertex() const { return _t_vertex; }
// gives a handle to the current cell.
/* By invariance, this cell is intersected by the segment
* between `source()` and `target()`.
* \return a handle to the current cell.
* \sa `cell()`.
*/
Cell_handle handle() const
{
return _cur.cell;
}
// gives the previous cell.
/* This cell is uninitialized until the iterator leaves the initial
* cell.
* By invariance, once initialized, this cell must be intersected by the segment
* between `source()` and `target()`.
* \return the previous cell.
* \sa `handle()`.
*/
Cell_handle previous() const
{
return prev_cell();
}
// provides a dereference operator.
/* \return a pointer to the current cell.
*/
Cell* operator->()
{
return &*(_cur.cell);
}
// provides an indirection operator.
/* \return the current cell.
*/
Cell& operator*()
{
return *(_cur.cell);
}
// provides a conversion operator.
/* \return a handle to the current cell.
*/
operator const Cell_handle&() const
{
return _cur.cell;
}
// provides a conversion operator.
/* \return the simplex through which the current cell was entered.
*/
operator Simplex() const { return _cur; }
// checks whether the iterator has reached the final cell, which contains the `target()`.
/* If the `target()` lies on a facet, edge, or vertex, the final cell is the cell containing
* the interior of the segment between `source()` and `target()`.
* \return true iff the current cell contains the `target()`.
*/
bool has_next() const
{
return this->cell() != Cell_handle();
}
// gives the simplex through which the current cell was entered.
/* For the first cell, containing the `source()` \f$ s \f$,
* this indicates the location of \f$ s \f$ in this cell.
*/
void entry( Locate_type& lt, int& li, int& lj ) const
{
lt = this->lt(); li = this->li(); lj = this->lj();
}
std::tuple<Locate_type, int, int> entry() const
{
return { lt(), li(), lj() };
}
// gives the simplex through which the previous cell was exited.
/* \pre the current cell is not the initial cell.
*/
void exit( Locate_type& lt, int& li, int& lj ) const
{
lt = prev_lt(); li = prev_li(); lj = prev_lj();
}
std::tuple<Locate_type, int, int> exit() const
{
return { prev_lt(), prev_li(), prev_lj() };
}
// gives the past-the-end iterator associated with this iterator.
SCI end() const;
// \}
public:
// \name Mutators
// \{
// provides the increment postfix operator.
/* After incrementing the iterator, the current cell intersects the segment
* between `source()` and `target()` closer to the `target()` than the previous cell.
* \sa `operator++(int)`.
* \pre The current cell does not contain the `target()`.
*/
SCI& operator++();
// provides the increment prefix operator.
/* After incrementing the iterator, the current cell intersects the segment
* between `source()` and `target()` closer to the `target()` than the previous cell.
* than the previous cell.
* \sa `operator++()`.
* \pre The current cell does not contain the `target()`.
*/
SCI operator++( int );
// iterates to the final cell, which contains the `target()`.
/* \return the final cell.
*/
Cell_handle complete();
// \}
public:
// \name Comparison
// \{
// compares this iterator with `sci`.
/* \param sci the other iterator.
* \return true iff the other iterator iterates the same triangulation along the same line segment
* and has the same current cell.
* \sa `operator!=( const SCI& t )`.
*/
bool operator==( const SCI& sci ) const;
// compares this iterator with `sci`.
/* \param sci the other iterator.
* \return `false` iff the other iterator iterates the same triangulation along the same line segment
* and has the same current cell.
* \sa `operator==( const SCI& t ) const`.
*/
bool operator!=( const SCI& sci ) const;
// compares the current cell with `ch`.
/* \param ch a handle to the other cell.
* \return true iff the current cell is the same as the one pointed to by `ch`.
* \sa `operator!=( const Cell_handle& ch ) const`.
* \sa `operator==( typename TriangulationTraits_3::Cell_handle ch, Triangulation_segment_cell_iterator_3<TriangulationTraits_3> t )`.
*/
bool operator==( const Cell_handle& ch ) const
{
return ch == _cur.cell;
}
// compares the current cell with `ch`.
/* \param ch a handle to the other cell.
* \return `false` iff the current cell is the same as the one pointed to by `ch`.
* \sa `operator==( const Cell_handle& ch )`.
* \sa `operator!=( typename TriangulationTraits_3::Cell_handle ch, Triangulation_segment_cell_iterator_3<TriangulationTraits_3> t )`.
*/
bool operator!=( const Cell_handle& ch ) const
{
return ch != _cur.cell;
}
// \}
bool operator==( Nullptr_t CGAL_assertion_code(n) ) const;
bool operator!=( Nullptr_t n ) const;
protected:
// \internal \name Protected Member Functions
// \{
// walks to the next cell.
/* \sa `complete()`.
*/
void walk_to_next();
// increments the iterator.
/* This method may perform more actions based on the superclass.
* \sa `complete()`.
*/
void increment() {
typedef typename Incrementer::SCI Expected;
#ifdef CGAL_TST_ASSUME_CORRECT_TYPES
Expected& sci = static_cast<Expected&>( *this );
#else // CGAL_TST_ASSUME_CORRECT_TYPES
Expected& sci = dynamic_cast<Expected&>( *this );
#endif // CGAL_TST_ASSUME_CORRECT_TYPES
Incrementer().increment( sci );
}
// \}
private:
// at the end of the constructors, entry() is a vertex, edge or facet,
// we need to circulate/iterate over its incident cells to
// make sure that the current cell intersects the input query
void jump_to_intersecting_cell();
// walk_to_next(), if the triangulation is 3D.
std::pair<Simplex, Simplex> walk_to_next_3(const Simplex& prev,
const Simplex& cur) const;
void walk_to_next_3_inf( int inf );
// walk_to_next(), if the triangulation is 2D.
void walk_to_next_2();
void walk_to_next_2_inf( int inf );
private:
inline int edgeIndex( int i, int j ) const {
CGAL_precondition( i>=0 && i<=3 );
CGAL_precondition( j>=0 && j<=3 );
CGAL_precondition( i != j );
return ( i==0 || j==0 ) ? i+j-1 : i+j;
}
bool have_same_entry(const Simplex& s1, const Simplex& s2) const;
// Compute the orientation of a point compared to the oriented plane supporting a half-facet.
CGAL::Orientation orientation(const Facet& f, const Point& p) const;
bool coplanar(const Facet &f, const Point &p) const;
// Gives the edge incident to the same cell that is not incident to any of the input vertices.
Edge opposite_edge(Cell_handle c, int li, int lj) const;
Edge opposite_edge(const Edge& e) const;
protected:
// ref-accessors to the simplex, for use in internal code
// access _cur
Cell_handle& cell() { return _cur.cell; }
Cell_handle const& cell() const { return _cur.cell; }
Locate_type& lt() { return _cur.lt; }
Locate_type const& lt() const { return _cur.lt; }
int& li() { return _cur.li; }
int const& li() const { return _cur.li; }
int& lj() { return _cur.lj; }
int const& lj() const { return _cur.lj; }
// access _prev
Cell_handle& prev_cell() { return _prev.cell; }
Cell_handle const& prev_cell() const { return _prev.cell; }
Locate_type& prev_lt() { return _prev.lt; }
Locate_type const& prev_lt() const { return _prev.lt; }
int& prev_li() { return _prev.li; }
int const& prev_li() const { return _prev.li; }
int& prev_lj() { return _prev.lj; }
int const& prev_lj() const { return _prev.lj; }
}; // class Triangulation_segment_cell_iterator_3
// compares a handle to a cell to a traverser.
/* \param ch the handle to a cell.
* \param t the traverser.
* \return true iff the cell currently traversed by `t` is the same as the one pointed to by `ch`.
* \sa `operator!=( typename TriangulationTraits_3::Cell_handle ch, Triangulation_segment_cell_iterator_3<TriangulationTraits_3> t )`.
* \sa `Triangulation_segment_cell_iterator_3::operator==( const Cell_handle& ch )`.
*/
template < class Tr, class Inc >
inline bool operator==( typename Tr::Cell_handle ch, Triangulation_segment_cell_iterator_3<Tr,Inc> tci ) { return tci == ch; }
// compares a handle to a cell to a traverser.
/* \param ch the handle to a cell.
* \param t the traverser.
* \return `false` iff the cell currently traversed by `t` is the same as the one pointed to by `ch`.
* \sa `operator==( typename TriangulationTraits_3::Cell_handle ch, Triangulation_segment_cell_iterator_3<TriangulationTraits_3> t )`.
* \sa `Triangulation_segment_cell_iterator_3::operator!=( const Cell_handle& ch )`.
*/
template < class Tr, class Inc >
inline bool operator!=( typename Tr::Cell_handle ch, Triangulation_segment_cell_iterator_3<Tr,Inc> tci ) { return tci != ch; }
/********************************************************************/
/********************************************************************/
/********************************************************************/
template < class Tr_, class Inc = internal::Incrementer<Tr_> >
class Triangulation_segment_simplex_iterator_3
{
typedef Tr_ Tr;
typedef typename Tr::Triangulation_data_structure Tds;
typedef typename Tr::Geom_traits Gt;
typedef Inc Incrementer;
private:
typedef Triangulation_segment_simplex_iterator_3<Tr_, Inc> Simplex_iterator;
typedef Triangulation_segment_cell_iterator_3<Tr_, Inc> SCI;
private:
typedef typename SCI::Point Point;
typedef typename SCI::Segment Segment;
public:
// \{
typedef typename SCI::Vertex_handle Vertex_handle;//< defines the type of a handle for a vertex in the triangulation
typedef typename SCI::Cell_handle Cell_handle; //< defines the type of a handle for a cell in the triangulation.
typedef typename SCI::Cell Cell; //< defines the type of a handle for a cell in the triangulation.
typedef typename SCI::Triangulation::Edge Edge; //< defines the type of an edge in the triangulation.
typedef typename SCI::Triangulation::Facet Facet; //< defines the type of a facet in the triangulation.
typedef typename SCI::Locate_type Locate_type; //< defines the simplex type returned from location.
typedef CGAL::Triangulation_simplex_3<Tds> Simplex_3;
typedef Simplex_3 value_type; //< defines the value type the iterator refers to.
typedef const Simplex_3& reference; //< defines the reference type of the iterator.
typedef const Simplex_3* pointer; //< defines the pointer type of the iterator.
typedef std::size_t size_type; //< defines the integral type that can hold the size of a sequence.
typedef std::ptrdiff_t difference_type; //< defines the signed integral type that can hold the distance between two iterators.
typedef std::forward_iterator_tag iterator_category; //< defines the iterator category.
// \}
private:
SCI _cell_iterator;
Simplex_3 _curr_simplex;
public:
Triangulation_segment_simplex_iterator_3(const Tr* tr
, Vertex_handle s, Vertex_handle t)
: _cell_iterator(tr, s, t)
{ set_curr_simplex_to_entry(); }
Triangulation_segment_simplex_iterator_3(const Tr* tr
, Vertex_handle s, const Point& t)
: _cell_iterator(tr, s, t)
{ set_curr_simplex_to_entry(); }
Triangulation_segment_simplex_iterator_3(const Tr* tr
, const Point& s, Vertex_handle t, Cell_handle hint = Cell_handle())
: _cell_iterator(tr, s, t, hint)
{ set_curr_simplex_to_entry(); }
Triangulation_segment_simplex_iterator_3(const Tr* tr
, const Point& s, const Point& t, Cell_handle hint = Cell_handle())
: _cell_iterator(tr, s, t, hint)
{ set_curr_simplex_to_entry(); }
Triangulation_segment_simplex_iterator_3(const Tr* tr
, const Segment& seg, Cell_handle hint = Cell_handle())
: _cell_iterator(tr, seg, hint)
{ set_curr_simplex_to_entry(); }
Triangulation_segment_simplex_iterator_3(const Tr* tr)
: _cell_iterator(tr)
, _curr_simplex()
{}
bool operator==(const Simplex_iterator& sit) const
{
return sit._cell_iterator == _cell_iterator
&& sit._curr_simplex == _curr_simplex;
}
bool operator!=(const Simplex_iterator& sit) const
{
return sit._cell_iterator != _cell_iterator
|| sit._curr_simplex != _curr_simplex;
}
const Point& source() const { return _cell_iterator.source(); }
const Point& target() const { return _cell_iterator.target(); }
const Tr& triangulation() const { return *_cell_iterator.triangulation(); }
private:
Triangulation_segment_simplex_iterator_3
(const SCI& sci)
: _cell_iterator(sci)
, _curr_simplex()
{}
private:
void set_curr_simplex_to_entry()
{
#if CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3
std::cerr << "cell iterator is:\n" << _cell_iterator.debug_iterator() << std::endl;
#endif // #if CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3
Locate_type lt;
int li, lj;
Cell_handle cell = Cell_handle(_cell_iterator);
//check what is the entry type of _cell_iterator
if (cell == Cell_handle())
{
//where did the segment get out from previous cell
cell = _cell_iterator.previous();
_cell_iterator.exit(lt, li, lj);
}
else
{
_cell_iterator.entry(lt, li, lj);
}
switch (lt)
{
case Locate_type::VERTEX:
_curr_simplex = cell->vertex(li);
break;
case Locate_type::EDGE:
_curr_simplex = Edge(cell, li, lj);
break;
case Locate_type::FACET:
_curr_simplex = Facet(cell, li);
break;
//the 3 cases below correspond to the case when _cell_iterator
//is in its initial position: _cur is locate(source)
case Locate_type::CELL:
case Locate_type::OUTSIDE_CONVEX_HULL:
case Locate_type::OUTSIDE_AFFINE_HULL:
if (Cell_handle(_cell_iterator) == Cell_handle())
_curr_simplex = Simplex_3();
else
_curr_simplex = cell;
break;
default:
CGAL_unreachable();
};
}
public:
Simplex_iterator end() const
{
Simplex_iterator sit(_cell_iterator.end());
return sit;
}
// provides the increment postfix operator.
Simplex_iterator& operator++()
{
auto increment_cell_iterator = [&]() {
++_cell_iterator;
#if CGAL_DEBUG_TRIANGULATION_SEGMENT_TRAVERSER_3
std::cerr << "increment cell iterator to:\n" << _cell_iterator.debug_iterator() << '\n';
#endif
};
CGAL_assertion(_curr_simplex.incident_cell() != Cell_handle());
if(!cell_iterator_is_ahead()) {
increment_cell_iterator(); // cell_iterator needs to be ahead
}
Cell_handle ch_next = Cell_handle(_cell_iterator);
Cell_handle ch_prev = _cell_iterator.previous();
Locate_type lt_prev;
int li_prev, lj_prev;
_cell_iterator.exit(lt_prev, li_prev, lj_prev);
if(_curr_simplex.dimension() == 3) {
set_curr_simplex_to_entry();
return *this;
}
if(lt_prev == Locate_type::CELL ||
lt_prev == Locate_type::OUTSIDE_CONVEX_HULL ||
lt_prev == Locate_type::OUTSIDE_AFFINE_HULL)
{
CGAL_assertion(ch_next == Cell_handle());
_curr_simplex = ch_prev;
return *this;
}
switch(_curr_simplex.dimension()) {
case 2: { /*Facet*/
CGAL_assertion((ch_next == Cell_handle()) == (_cell_iterator == _cell_iterator.end()));
switch(lt_prev) {
case Locate_type::VERTEX: { // facet-cell?-vertex-outside
Vertex_handle v_prev{ch_prev->vertex(li_prev)};
if(facet_has_vertex(get_facet(), v_prev))
_curr_simplex = v_prev;
else
_curr_simplex = ch_prev;
} break;
case Locate_type::EDGE: { // facet-cell?-edge-outside
Edge edge_prev{ch_prev, li_prev, lj_prev};
if(facet_has_edge(get_facet(), edge_prev))
_curr_simplex = edge_prev;
else
_curr_simplex = ch_prev;
} break;
case Locate_type::FACET: { // facet-cell-facet-outside
Facet f_prev{ch_prev, li_prev};
if(is_same_facet(f_prev, get_facet())) {
if(ch_next == Cell_handle())
_curr_simplex = Simplex_3();
else
_curr_simplex = ch_next;
} else
_curr_simplex = ch_prev;
} break;
default:
CGAL_unreachable();
}
} break;
case 1: {/*Edge*/
switch(lt_prev) {
case Locate_type::VERTEX: { //edge-vertex-outside
Vertex_handle v_prev{ch_prev->vertex(li_prev)};
if(edge_has_vertex(get_edge(), v_prev))
_curr_simplex = v_prev;
else
_curr_simplex = shared_facet(get_edge(), v_prev);
} break;
case Locate_type::EDGE: { //edge-outside or edge-cell-edge-outside
const Edge e_prev(ch_prev, li_prev, lj_prev);
if(is_same_edge(get_edge(), e_prev)) {
if(ch_next == Cell_handle()) {
_curr_simplex = Simplex_3();
} else {
_curr_simplex = ch_next;
}
} else {
auto facet_opt = shared_facet(get_edge(), e_prev);
if(facet_opt.has_value()) {
_curr_simplex = facet_opt.value();
}
else {
_curr_simplex = shared_cell(get_edge(), e_prev);
}
}
} break;
case Locate_type::FACET: {
Facet f_prev{ch_prev, li_prev};
if(facet_has_edge(f_prev, get_edge()))
_curr_simplex = f_prev; //edge-facet-outside
else
_curr_simplex = ch_prev; //query goes through the cell
} break;
default:
CGAL_unreachable();
}
} break;
case 0 :/*Vertex_handle*/
{
switch(lt_prev) {
case Locate_type::VERTEX: {
if(ch_prev->vertex(li_prev) != get_vertex()) // avoid infinite loop edge-vertex-same edge-...
_curr_simplex = Edge(ch_prev, li_prev, ch_prev->index(get_vertex()));
else {
if(ch_next == Cell_handle()) {
_curr_simplex = Simplex_3();
} else {
_curr_simplex = ch_next;
}
}
} break;
case Locate_type::EDGE: {
const Edge e_prev(ch_prev, li_prev, lj_prev);
if(edge_has_vertex(e_prev, get_vertex()))
_curr_simplex = e_prev;
else
_curr_simplex = shared_facet(Edge(ch_prev, li_prev, lj_prev), get_vertex());
} break;
case Locate_type::FACET: {
if(ch_prev->vertex(li_prev) != get_vertex()) // vertex-facet-outside
_curr_simplex = Facet(ch_prev, li_prev);
else // vertex-cell-facet-outside
_curr_simplex = ch_prev;
} break;
default:
CGAL_unreachable();
}
} break;
default:
CGAL_unreachable();
};
return *this;
}
// provides the increment prefix operator.
Simplex_iterator operator++(int)
{
Simplex_iterator tmp(*this);
++(*this);
return tmp;
}
// provides a dereference operator.
/* \return a pointer to the current cell.
*/
const Simplex_3* operator->() { return &_curr_simplex; }
// provides an indirection operator.
/* \return the current cell.
*/
const Simplex_3& operator*() { return _curr_simplex; }
// provides a conversion operator.
/* \return the current simplex
*/
operator const Simplex_3() const { return _curr_simplex; }
bool is_vertex() const { return _curr_simplex.dimension() == 0; }
bool is_edge() const { return _curr_simplex.dimension() == 1; }
bool is_facet() const { return _curr_simplex.dimension() == 2; }
bool is_cell() const { return _curr_simplex.dimension() == 3; }
const Cell cell() const
{
return _cell_iterator.cell();
}
const Simplex_3& get_simplex() const { return _curr_simplex; }
Vertex_handle get_vertex() const
{
CGAL_assertion(is_vertex());
return Vertex_handle(_curr_simplex);
}
Edge get_edge() const
{
CGAL_assertion(is_edge());
return Edge(_curr_simplex);
}
Facet get_facet() const
{
CGAL_assertion(is_facet());
return Facet(_curr_simplex);
}
Cell_handle get_cell() const
{
CGAL_assertion(is_cell());
return Cell_handle(_curr_simplex);
}
public:
//returns true in any of the degenerate cases,
//i.e. when _curr_simplex has the following values successively
// edge / facet / edge
// edge / facet / vertex
// vertex / facet / edge
// vertex / edge / vertex
// TODO : rename this function
bool is_collinear() const
{
int curr_dim = _curr_simplex.dimension();
//this concerns only edges and facets
if (curr_dim == 1 || curr_dim == 2)
return cell_iterator_is_ahead();
//the degeneracy has been detected by moving cell_iterator forward
else
return false;
}
int simplex_dimension() const
{
return _curr_simplex.dimension();
}
private:
bool cell_iterator_is_ahead() const
{
Cell_handle ch = Cell_handle(_cell_iterator);
if(ch == Cell_handle())
return true;
switch (_curr_simplex.dimension())
{
case 0 ://vertex
return !ch->has_vertex(get_vertex());
case 1 ://edge
return !cell_has_edge(ch, get_edge());
case 2 ://facet
return !cell_has_facet(ch, get_facet());
case 3 ://cell
return ch != get_cell();
default:
CGAL_unreachable();
}
//should not be reached
CGAL_unreachable();
return false;
}
bool cell_has_edge(const Cell_handle ch, const Edge& e) const
{
Vertex_handle v1 = e.first->vertex(e.second);
Vertex_handle v2 = e.first->vertex(e.third);
return ch->has_vertex(v1) && ch->has_vertex(v2);
}
bool cell_has_facet(const Cell_handle c, const Facet& f) const
{
return f.first == c
|| f.first->neighbor(f.second) == c;
}
bool facet_has_edge(const Facet& f, const Edge& e) const
{
Vertex_handle v1 = e.first->vertex(e.second);
Vertex_handle v2 = e.first->vertex(e.third);
Cell_handle c = f.first;
const int fi = f.second;
unsigned int count = 0;
for (int i = 1; i < 4; ++i)
{
Vertex_handle vi = c->vertex((fi + i) % 4);
if (vi == v1 || vi == v2)
++count;
if (count == 2)
return true;
}
return false;
}
bool facet_has_vertex(const Facet& f, const Vertex_handle v) const
{
return triangulation().tds().has_vertex(f, v);
}
bool edge_has_vertex(const Edge& e, const Vertex_handle v) const
{
return e.first->vertex(e.second) == v
|| e.first->vertex(e.third) == v;
}
bool is_same_edge(const Edge& e1, const Edge& e2) const
{
return edge_has_vertex(e1, e2.first->vertex(e2.second))
&& edge_has_vertex(e1, e2.first->vertex(e2.third));
}
bool is_same_facet(const Facet& f1, const Facet& f2) const
{
return f1 == f2 || triangulation().mirror_facet(f1) == f2;
}
std::optional<Vertex_handle> shared_vertex(const Edge& e1, const Edge& e2) const
{
Vertex_handle v1a = e1.first->vertex(e1.second);
Vertex_handle v1b = e1.first->vertex(e1.third);
Vertex_handle v2a = e2.first->vertex(e2.second);
Vertex_handle v2b = e2.first->vertex(e2.third);
if (v1a == v2a || v1a == v2b)
return v1a;
else if (v1b == v2a || v1b == v2b)
return v1b;
else
return {};
}
std::optional<Facet> shared_facet(const Edge& e1, const Edge& e2) const
{
Vertex_handle v2a = e2.first->vertex(e2.second);
Vertex_handle v2b = e2.first->vertex(e2.third);
auto sv_opt = shared_vertex(e1, e2);
if(!sv_opt.has_value())
return {};
Vertex_handle sv = sv_opt.value();
Vertex_handle nsv2 = (sv == v2a) ? v2b : v2a;
typename Tr::Facet_circulator circ
= triangulation().incident_facets(e1);
typename Tr::Facet_circulator end = circ;
do
{
Facet f = *circ;
for (int i = 1; i < 4; ++i)
{
if (nsv2 == f.first->vertex((f.second + i) % 4))
return f;
}
} while (++circ != end);
return {};
}
Facet shared_facet(const Edge& e, const Vertex_handle v) const
{
typename Tr::Facet_circulator circ
= triangulation().incident_facets(e);
typename Tr::Facet_circulator end = circ;
do
{
Facet f = *circ;
if (facet_has_vertex(f, v))
return f;
} while (++circ != end);
std::cerr << "There is no facet shared by e and v" << std::endl;
CGAL_unreachable();
return Facet(Cell_handle(), 0);
}
Cell_handle shared_cell(const Edge& e, const Vertex_handle v) const
{
typename Tr::Cell_circulator circ
= triangulation().incident_cells(e);
typename Tr::Cell_circulator end = circ;
do
{
Cell_handle c = circ;
if (c->has_vertex(v))
return c;
} while (++circ != end);
std::cerr << "There is no cell shared by e and v" << std::endl;
CGAL_unreachable();
return Cell_handle();
}
Cell_handle shared_cell(const Facet& f, const Vertex_handle v) const
{
Cell_handle c = f.first;
if (c->has_vertex(v))
return c;
else
{
c = f.first->neighbor(f.second);
CGAL_assertion(c->has_vertex(v));
return c;
}
}
Cell_handle shared_cell(const Edge e1, const Edge e2) const {
Facet facet = shared_facet(e1, e2.first->vertex(e2.second));
return shared_cell(facet, e2.first->vertex(e2.third));
}
};//class Triangulation_segment_simplex_iterator_3
} // namespace CGAL
#include <CGAL/Triangulation_3/internal/Triangulation_segment_traverser_3_impl.h>
#endif // CGAL_TRIANGULATION_SEGMENT_TRAVERSER_3_H